翻訳と辞書
Words near each other
・ Moe Becker
・ Moe Berg
・ Moe Berg (musician)
・ Moe book
・ Moe Brooker
・ Moe Brothers
・ Module (mathematics)
・ Module (musician)
・ Module file
・ Module homomorphism
・ Module Marketplace
・ Module of covariants
・ Module pattern
・ Module spectrum
・ Modulf Aukan
Moduli (physics)
・ Moduli of algebraic curves
・ Moduli scheme
・ Moduli space
・ Moduli stack of formal group laws
・ Moduli stack of principal bundles
・ Modulidae
・ Modulin
・ Modulo
・ Modulo (jargon)
・ Modulo operation
・ Modulo-N code
・ Modulok (rapper)
・ Modulon
・ Modulor


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Moduli (physics) : ウィキペディア英語版
Moduli (physics)
In quantum field theory, the term moduli (or more properly moduli fields) is sometimes used to refer to scalar fields whose potential energy function has continuous families of global minima. Such potential functions frequently occur in supersymmetric systems. The term "modulus" is borrowed from mathematics, where it is used synonymously with "parameter". The word moduli (moduln in German) first appeared in 1857 in Bernhard Riemann's celebrated paper "Theorie der Abel'schen Functionen"〔Bernhard Riemann, Journal für die reine und angewandte Mathematik, vol. 54 (1857), pp. 101-155

==Moduli spaces in quantum field theories==

In quantum field theories, the possible vacua are usually labelled by the vacuum expectation values of scalar fields, as Lorentz invariance forces the vacuum expectation values of any higher spin fields to vanish. These vacuum expectation values can take any value for which the potential function is a minimum. Consequently, when the potential function has continuous families of global minima, the space of vacua for the quantum field theory is a manifold (or orbifold), usually called the vacuum manifold. This manifold is often called the moduli space of vacua, or just the moduli space, for short.
The term moduli is also used in string theory to refer to various continuous parameters which label possible string backgrounds: the expectation value of the dilaton field, the parameters (e.g. the radius and complex structure) which govern the shape of the compactification manifold, et cetera. These parameters are represented, in the quantum field theory that approximates the string theory at low energies, by the vacuum expectation values of massless scalar fields, making contact with the usage described above. In string theory, the term "moduli space" is often used specifically to refer to the space of all possible string backgrounds.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Moduli (physics)」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.